

30XBV

VARIABLE-SPEED SCREW LIQUID CHILLER WITH GREENSPEED® INTELLIGENCE

Nominal cooling capacity 140 - 512 Tons Nominal cooling capacity 494 - 1800 kW

DESIGNED FOR HIGH AMBIANT TEMPERATURE CONDITIONS
BEST VALUE SOLUTION
OUTSTANDING PERFORMANCES & RELIABILITY
EXTENSIVE SCOPE OF APPLICATION
LOW SOUND LEVELS

The AquaForce® 30XBV liquid chillers with Greenspeed® Intelligence are the perfect solution for commercial applications where installers, consultants and building owners require superior reliability and optimal performances, especially at part load.

The 30XBV units are designed to provide outstanding performances, at both full load and part load operation, for high temperature environments (up to 55°C). This result is achieved through the optimised combination of proven best-in-class technologies that include:

- 2nd generation of high-efficiency variable-speed twin screw compressors with built in volume index control (Vi) valve for optimal full and part load performance and Integrated Resonator Array (IRA) for low sound operation. Air-cooled compressor variable-speed drive (VSD) to ensure reliable operation and easy maintenance.
- 6th generation of Carrier Flying Bird® fans with AC motor.
- Carrier flooded shell-and-tube evaporator with new copper tubes for low pressure drops
- 2nd generation of "V" shape Carrier Novation® microchannel heat exchangers with optional Enviro-Shield coatings.
- Carrier SmartVu[™] control with color touch screen user interface that includes 10 langages.

CARRIER participates in the ECP programme for LCP-HP Check ongoing validity of certificate: www.eurovent-certification.com

30XBV CUSTOMER BENEFITS

Designed for high temperature conditions

Carrier's AquaForce® adapts effortlessly to a wide range of applications. Extended operating temperatures up to 55°C outdoor air make it ideal for high temperature environments. From high-end office buildings and hotels to healthcare facilities, data centers and industrial projects, AquaForce® 30XBV meets the most demanding expectations in terms of energy efficiency and savings, whatever the climate and wherever the location.

Outstanding performances

Equipped with variable-speed screw compressors, AquaForce® 30XBV chiller with Greenspeed® intelligence automatically adjusts the cooling capacity to perfectly match the needs of the building or the process load variations. The result is optimum operation at both full load and part load.

up to **5.7**

■ Low sound levels

The new generation of Carrier 06Z variable-speed twin screw compressor with integrated resonator array and the 6th generation of Flying Bird® fans with new fan blade design inspired by nature help to reduce compressor and airflow noise down to 96 dB(A).

■ Absolute reliability

Equipped with Carrier variable-speed twin screw compressors, reliable air-cooled variable frequency drive and fully aluminium Novation® microchannel heat exchangers with Super Enviroshield coatings (option) to deliver guaranteed long-term optimized performance.

Outstanding reliability

■ Best value solution

The 30XBV is the most advantageous solution combining price, quality and performances.

The range has been designed to offer a fully reliable and competitive unit with optimized part load performance.

Efficient & competitive

CUSTOMER BENEFITS

AquaForce® 30XBV liquid chillers with Greenspeed® Intelligence adapt effortlessly to a wide range of applications. An extended operating range covering ambient temperatures up to 55°C makes it ideal for all areas of activity. From high-end office buildings and hotels to healthcare facilities, data centers and industrial projects, 30XBV meets the most demanding expectations in terms of energy efficiency and savings, whatever the climate and wherever the location.

Furthermore, the advanced SmartVu™ intelligent control system displays operating parameters in real time, making it intuitive and particularly user-friendly. 30XBV also features innovative smart energy monitoring, providing users with smart data such as real time electric energy consumption, cooling capacity, and instantaneous and average seasonal energy efficiency ratios as well as smart refrigerant leak alert that can indicate significant loss of refrigerant at any point of the system.

For further energy savings, 30XBV can be monitored remotely by Carrier experts for energy consumption diagnosis and optimization.

The AquaForce® 30XBV is equipped with variable-speed screw compressor and fixed-speed fans with AC motors (optional variable speed fans). The 30XBV is enhanced to meet the most demanding technical and economic requirements while offering high seasonal energy efficiency levels.

(Average EER of 2.9 (in accordance to EN14511), Average IPLV. SI of 5.50 (in accordance to AHRI standard 551/591 (SI))

Outstanding energy performance

- The 30XBV standard unit is designed for high performances both at full & part load: average EER of 2.8 per
- EN14511-3:2022, Average IPLV.SI of 5.05 per AHRI standard (Air-Conditioning, Heating, and Refrigeration Institute; U.S.A) 551/591 (SI).
- The high energy efficiency is achieved through:
 - 2nd generation of Carrier high-efficiency variable-speed twin-screw compressors with built in volume index control (Vi) valve for both optimal full and part load performance
 - Novation® aluminum condenser with high-efficiency micro-channel coils technology
 - New Carrier flooded shell-and-tube evaporator with new copper tubes for low pressure drops
 - Electronic expansion device permitting operation at a lower condensing pressure and improved utilisation of the evaporator heat exchange surface (superheat control)
 - Economiser system with electronic expansion device for increased cooling capacity.
- Optimised electrical performance:
 - Negligible start-up current (value is lower than the maximum unit current draw)
 - High displacement power factor (above 0.98)
 - EMC compliance with Class 3 requirements of the EU standard EN61800-3.

Built-in reliability and easy servicing

The 30XBV units offer enhanced performances as well as Carrier's acclaimed product quality and reliability. Major components were chosen, selected and tested to minimise the possibility of failure.

- 2nd generation of variable-speed twin-screw compressors:
 - The screw compressors are industrial-type with oversized bearings and motor cooled by suction gas, with a proven failure rate lower than 0.1%.
 - Air-cooled compressor variable-speed drive (VSD) to ensure reliable operation and easy maintenance. (Glycolcooled variable-speed drive (VSD) types are subject to higher failure rates due to glycol pump issue. Refrigerantcooled variable-speed drive (VSD) types are subject to higher compressor vibration levels causing possible failures in the long term).
 - Compressor bearing life exceeding 100 000 hours
 - All components related to the compressor assembly are easily accessible on site minimising down-time.

Air-cooled condenser:

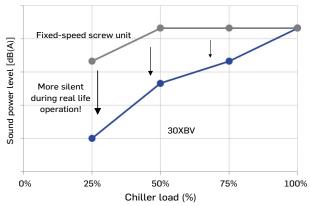
- Novation® aluminum micro-channel heat exchanger (MCHE) with high corrosion resistance. The all aluminum design eliminates the formation of galvanic currents between aluminum and copper that cause coil corrosion in saline or corrosive environments
- Enviro-shield® coating for MCHE used in standard and mildly corrosive environments with superior durability confirmed through 4000 hours testing in constant neutral salt spray per ASTM B117.
- Super Enviro-shield® coating for MCHE used in highly corrosive environments (industry or marine applications) with superior durability confirmed through 6000 hours testing in constant neutral salt spray per ASTM B117.

Evaporator:

- Carrier designed flooded evaporator with mechanically cleanable water tubes
- Electronic paddle-free flow switch to ensure prompt alarm in case of poor liquid flow rate
- Thermal insulation with aluminum sheet finish (option) improved resistance to mechanical and UV damage.

Refrigerant circuits:

- Two independent refrigerant circuits to secure partial cooling, if one of the two develops a fault.
- Auto-adaptive control:
 - Control algorithm prevents excessive compressor cycling (Carrier patent)
 - Automatic compressor unloading in case of abnormally high condensing pressure. If condenser coil fouling or fan failure occurs, the AquaForce® continues to operate, but at reduced capacity.


CUSTOMER BENEFITS

- Exceptional endurance tests:
 - To design critical components and sub-assemblies to minimise the risk of failure on site, Carrier uses specialised laboratories and advanced dynamic simulation tools.
 - To ensure that the units reach customer sites in the same condition as they are when tested in the factory, Carrier tests the machine behavior while being moved along a 250 km trial. The test-route is based on a military standard and is the equivalent to 5000km by truck in a normal road.
 - To ensure coils corrosion resistance, salt mist corrosion resistance test are performed in Carrier's laboratory.

In addition, to maintain unit performance throughout its operating life, whilst minimising maintenance costs, end users can access the "Carrier Connect" remote monitoring service.

Minimised operating sound levels

■ The Greenspeed® Intelligence, featuring variable-speed screw compressors, minimises noise levels at part load operation.

- Standard unit features include:
 - The new generation of Carrier 06Z variable-speed twin screw compressor with integrated resonator array to reduce the noise level by 6 dB(A) compared with 06T twin screw compressor previous generation.
 - The 6^{th} generation of silent Flying Bird® fans with new fan blade design inspired by nature, help reduce airflow noise.
- 30XBV is available with 2 sound levels to match the most sensitive environments:
 - Standard: standard unit configuration with new generation of low sound screw compressor and fans
 - Low noise option: addition of high-performance compressor sound enclosure.

Easy and fast installation

- Simplified electrical connections:
 - Main disconnect switch (option 70 & 70D)
 - Transformer supply to the integrated control circuit (400/24V)
 - Single electrical point of connection.
- Simplified water connections:
 - Victaulic connections on the evaporator
 - Clearly identified entering and practical reference marks for entering and leaving water connections.
- Fast commissioning:
 - Systematic factory operating test before shipment
 - Functional test for main components, expansion devices, fans and compressors.

Environmental responsibility

- The AquaForce® 30XBV liquid chillers with Greenspeed® Intelligence is a boost for green cities and contributes to a sustainable future. Combining a reduced charge of R134a refrigerant and exceptional energy efficiency it significantly lowers energy consumption while reducing carbon dioxide emissions by 25% throughout its life cycle (compared to previous fixed-speed screw liquid chiller generation).
- R-134a: HFC refrigerant with zero ozone depletion potential
- 40% less refrigerant charge: The micro-channel technology used for condenser coils optimises heat transfer while minimising the refrigerant volume.
- Leak tight refrigerant circuits:
 - Reduction of leaks as no capillary tubes and flare connections are used
 - Verification of pressure transducers and temperature sensors without transferring refrigerant charge
 - Discharge line shut-off valve and liquid line service valve for simplified maintenance.

Designed to support Green Building Design

A green building is a building that is environmentally sustainable and has been designed, constructed and is operated to minimise the total impact on the environment.

The resulting building will be economical to operate, offer increased comfort and create a healthier environment for the people who live and work there, increasing productivity.

The air conditioning system can use between 30 and 40% of the annual building energy consumption. Selection of the right air conditioning system is one of the main aspects to consider when designing a green building. For buildings with a variable load throughout the year 30XBV units offer a solution to this important challenge.

A number of green building certification programs exist in the market and offer third-party assessment of green building measures for a wide variety of building types.

30XBV TECHNICAL INSIGHTS

6TH GENERATION OF FLYING BIRD® FANS WITH AC

- Exclusive Carrier design
- Fan blade design inspired by nature
- Fixed or variable speed fans

2ND GENERATION OF "V" SHAPE NOVATION® MICRO CHANNEL HEAT EXCHANGERS

- Exclusive Carrier design
- High reliability with long-life aluminum alloy
- Significantly reduces refrigerant load (-40% vs cu/al coils)
- Enviro-shield® coating for mildly corrosive environments
- Super Enviro-shield® coating for highly corrosive environments (sandy, seaside or industrial environments)

ADVANCED SMARTVU™ — WITH 7 INCH COLOR TOUCH SCREEN INTERFACE

- Exclusive Carrier design
- Touch screen user interface BACnet, J -Bus or LON communication interfaces
- Web server capabilitieseasy remote access via internet
- Trending capabilities

FLOODED SHELL AND TUBE EVAPORATOR

- Exclusive Carrier design
- Flooded technology for high energy efficiency
- New generation of copper tubes with specific profile to reduce pressure drops when operating with glycol

LATEST GENERATION CARRIER VARIABLE SPEED 06Z TWIN SCREW COMPRESSOR WITH AC MOTOR

- Exclusive Carrier design
- Twin screw compressor designed for variable speed operation
- High efficiency AC motor
- Stepless variable-speed control (0%-100%)
- Integrated resonator array for compressor acoustic attenuation
- Integrated check valve for quiet shutdown
- Air-cooled inverter drive for increased reliability
- Bearing life exceeding 100,000 hours

IP54 ELECTRICAL CABINET AS STANDARD

- Air Cooled VSD system
- Single power connection point

SmartVu™

- New innovative smart control features:
 - An intuitive and user-friendly, coloured, 7" interface
 - 10 languages available on choice: DE, EN, ES, FR, IT, NL, PT, TR, TU + one additional customer choice
 - Screen-shots with concise and clear information in local languages
 - Complete menu, customised for different users (end user, service personnel and Carrier-factory technicians)
 - Setpoint offset based on the outside air temperature
 - Safe operation and unit setting: Password protection ensures that unauthorised people cannot modify any advanced parameters
 - Simple and "smart" intelligence uses data collection from the constant monitoring of all machine parameters to optimise unit operation
 - Night-mode: Cooling capacity management for reduced noise level.
 - With hydraulic module: Water pressure display and water flow rate calculation.
- Energy management:
 - Internal time schedule clock controls chiller on/off times and operation at a second set-point
 - The DCT (Data Collection Tool) records the alarms history to simplify and facilitate service operations.
- Maintenance functions
 - F-Gas regulation leak check reminder alert
 - Maintenance alert can be configured to days, months or hours of operation
- Advanced communication features
 - Easy and high-speed communication technology over Ethernet (IP) to a centralised building management system
 - Access to multiple unit parameters.

Remote management (standard)

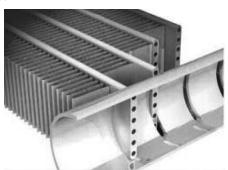
- Units with SmartVu[™] control can be easily accessed from the internet, using a PC with an Ethernet connection. This makes remote control quick and easy and offers significant advantages for service operations.
- AquaForce® with Greenspeed® Intelligence is equipped with an RS485 serial port that offers multiple remote control, monitoring and diagnostic possibilities. When networked with other Carrier equipment through the CCN (Carrier Comfort Network - proprietary protocol), all components form a HVAC system fully-integrated and balanced through one of the Carrier's network system products, like the Chiller System Manager or the Plant System Manager (optional).

- The 30XBV also communicates with other building management systems via optional communication gateways (BACnet, LON or JBus).
- The following commands/visualisations are possible from remote connection:
 - Start/Stop of the machine
 - Dual set-point management: Through a dedicated contact is possible to activate a second set-point (example, unoccupied mode)
 - Demand limit setting: To limit the maximum chiller capacity to a predefined value
 - Water pump control: These outputs control the contactors of one/two evaporator water pumps.
 - Water pumps changeover (only with hydraulic module options): These contacts are used to detect a water pump operation fault and automatically change over to the other pump.
 - Operation visualisation: Indication if the unit is operating or if it is in stand-by (no cooling load)
 - Alarm visualisation.

Remote management (EMM option 156+)

- The Energy Management Module (EMM) offers extended remote control possibilities:
 - Room temperature: Permits set-point reset based on the building indoor air temperature (if Carrier thermostats are installed)
 - Set-point reset: Allows reset of the cooling set-point based on a 4-20 mA.
 - Demand limit: Permits limitation of the maximum chiller capacity.
 - Demand limit 1 and 2: Closing of these contacts limits the maximum chiller capacity to two predefined values.
 - User safety: This contact can be used for any customer safety loop; opening the contact generates a specific alarm.
 - Ice storage end: When ice storage has finished, this input permits return to the second set-point (unoccupied mode).
 - Time schedule override: Closing of this contact cancels the programmed time schedule.
 - Out of service: This signal indicates that the chiller is completely out of service.
 - Chiller capacity: This analogue output (0-10 V) gives an immediate indication of the chiller capacity.
 - Alert indication: This volt-free contact indicates the necessity to carry out a maintenance operation or the presence of a minor fault.
 - Compressors running status: Set of outputs (as many as the compressors number) indicating which compressors are running.

New generation of Carrier 06Z variable-speed twin screw compressor


The new generation of 06Z variable-speed twin screw compressors benefits for Carrier's long experience in the development of twin-rotor screw compressors. The 06Z compressor design is based on the successful 06T screw compressor, core of the well-known AquaForce® series with a number of modifications to reduce noise level and improve the energy efficiency especially during part load operation.

- New 06Z twin screw compressor optimized for variable speed operation: elimination of the slide valve, built in volume index control (Vi) valve for both optimal full and part load performance, high efficiency AC motor with stepless inverter control from 20% to 100%.
- Separate air-cooled inverter drive for increased reliability.
- New 06Z twin screw compressor design with Integrated Resonator Array (IRA) to reduce the sound level by up to 6 dB(A) when compared with previous 06T generation.
- Integrated Check Valve for quiet shutdown.
- Bearing life exceeding 100 000 hours.
- A dedicated oil separator is installed at the discharge of each compressor to ensure maximum oil return: Oil separates from refrigerant by gravity and returns to the low pressure side of the compressor without use of additional pumps.
- Volume index control (Vi) valve provides a reliable method of adjusting the compression ratio to better match system demand. It provides optimal performance regardless of operating condition.
- Screw compressors work on the positive displacement principle to compress gas to a higher pressure. As a result, if there is an unusually high pressure in the condenser (due for example to coil fouling or operation in harsh climate) the compressor does not switch off, but continues operation at reduced capacity (unloaded mode).
- The silencer in the oil separator line (at the compressor outlet) considerably reduces discharge gas pulsations for much quieter operation.

Novation® Heat Exchangers with Microchannel Coil Technology

Already utilised in the automobile and aeronautical industries for many years, the Novation® Micro-Channel Heat Exchanger (MCHE) used in the AquaForce® is entirely made of aluminum. This one-piece concept significantly increases its corrosion resistance by eliminating the galvanic currents that are created when two different metals (copper and aluminum) come into contact in traditional heat exchangers.

- From the energy efficiency point-of-view the Novation® heat exchangers are approximately 10% more efficient than traditional coils and micro-channel coil technology allows a 40% reduction in the amount of refrigerant used in the chiller.
- The reduced depth of the Novation® MCHE reduces air pressure losses by 50% and makes it much less susceptible to fouling (e.g. by sand). Cleaning of the Novation® MCHE heat exchanger is very fast using a high pressure washer.
- To further enhance long-term performance, and protect coils from early deterioration, Carrier offers (as options) dedicated treatments for installations in corrosive environments.
 - The Novation® MCHE with Enviro-Shield protection (option 262) is recommended for installations in moderately corrosive environments. The Enviro-Shield protection utilises corrosion inhibitors which actively arrest oxidation in case of mechanical damage.
 - The Novation® MCHE with exclusive Super Enviro-Shield protection (option 263) is recommended for installations in corrosive environments. The Super Enviro-Shield protection consist of an extremely durable and flexible epoxy coating uniformly applied over all coil surfaces for complete isolation from the contaminated environment.
- After a total of more than 7,000 hours of testing following various test standards in Carrier laboratories, the Carrier Novation® MCHE with Super Enviro-shield® coating appears to be the best-suited customer choice to minimize the harmful effects of corrosive atmospheres and ensure long equipment life.
 - Best corrosion resistance per ASTM B117/D610 test
 - Best heat transfer performance per Carrier Marine 1 test
 - Proven reliability per ASTM B117 test

Coil Types (ranked by performance)	Visual Corrosion Evaluation	Heat Transfer Performance Degradation	Time to Failure	Test Campaign Conclusions
Super Enviro-shield® Novation® MCHE	Very good	Good	No coil leak	Best
Super Enviro-shield® Cu/Al coil	Very good	Very good	No coil leak	Very good
Enviro-shield® Novation® MCHE	Very good	Good	No coil leak	Very good
Al/Al coil	Very good	Good	No coil leak	Very good
Novation® MCHE	Good	Very good	No coil leak	Good
Cu/Cu coil	Good	Good	Leak	Acceptable
Blygold® Cu/Al coil	Good	Good	No coil leak	Acceptable
Precoat Cu/Al coil	Bad	Bad	No coil leak	Bad
Cu/Al coil	Bad	Bad	No coil leak	Bad

New generation of Flying Bird VI fans with AC motors

The 30XBV utilizes Carrier's the 6th generation Flying Bird® fan technology, engineered for maximum efficiency, super low noise, and wide operating range. The fan includes Carrier patented rotating shroud technology and back-swept blades with a unique wave-serration trailing edge inspired from nature.

It was designed and optimized for the 30XBV air management system configuration and heat exchanger technology.

The 30XBV is equipped with variable-speed AC fan motors (option 17A). It offers an economical solution to enhance seasonal energy efficiency levels for comfort applications. (Application thermal load variation from 0% to 100%).

Variable Frequency Drives (VFD)

The compressors of 30XBV are controlled by VFDs.

- VFDs electrical cabinet(s) has an IP54 rating as standard.
- Electrical cabinet(s) is capable of operating up to 55°C (with option 16 "High Ambient").
- Unit controls is capable of withstanding storage temperatures in the control compartment from -20°C to 68°C.
- All VFDs on the chiller (compressors motors) are fully air cooled and shall not require an additional glycol cooling system, thus avoiding the maintenance associated with such cooling systems.

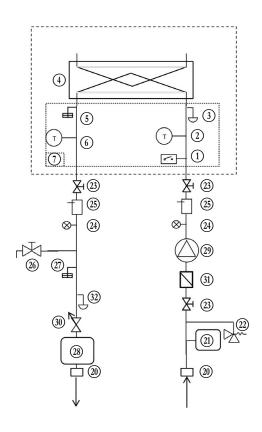
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
3	0	Х	В	٧	-	Α	1	1	0	0	-	1	2	3	4	ı	-

Product codification

- Digit 1-3: Air cooled Screw Chiller
- Digit 4: "B" = "V" shape condenser coils
- Digit 5: "V" = Variable speed compressors
- Digits 6: "-" = Standard
- Digits 7: "A" = R-134a
- Digit 8 to 11: Cooling capacity (kW)
- Digit 12: Rev number ("A" first rev, "B" second rev, ...)
- Digit 13-16: Incremental number for production

OPTIONS

Option	N°	Description	Advantage	Use 30XBV-A
Low noise level	15	Aesthetic and sound absorbing compressor enclosure	Noise level reduction	0500-1800
High ambient temperature	16	Electrical components sized for part load operation up to 55°C air ambient	Extended unit part-load operation up to 55 °C ambient temperature	0500-1800
Variable speed fans (AC)	17A	Unit equipped with variable speed fans (AC)	Enhances the unit seasonal energy efficiency performance	0500-1800
Grilles and enclosure panels	23	Metallic protection grilles and side enclosure panels	Improves aesthetics, protection against intrusion to the unit interior, coil and piping protection against impacts.	0500-1800
Enclosure panels	23A	Side enclosure panels	Improves aesthetics and piping protection against impacts.	0500-1800
Cooling mode operation down to -20°C	28	Electric resistance heater on water exchanger, water pipings and oil separator	Stable unit operation at air temperature down to -20°C, with vfd fan option	0500-1800
Lead/lag operation (sensor kit)	58	Unit equipped with supplementary water outlet temperature sensor kit (to be field installed) allowing lead/lag operation of two units connected in parallel	Optimised operation of two units connected in parallel operation with operating time equalisation	0500-1450
Main disconnect switch without fuse	70	Factory-installed main electric disconnect switch in the electrical cabinet	Ease-of-installation and compliance with local electrical	0500-1800
Main disconnect switch with short-circuit protection	70D	Disconnector circuit breaker equipped with an external disconnect switch handle	Ensure protection of main disconnect switch and associated cables against short-circuits when building devices are not compliant	0500-1800
Service valve set	92	Liquid line valve, evaporator suction line valve and compressor discharge line valve	Allow isolation of various refrigerant circuit components for simplified service and maintenance	0500-1800
Compressor discharge valve	93A	Shut-off valve on the compressor discharge piping	Simplified maintenance	0500-1800
Bacnet over IP	149	Bi-directional high-speed communication using BACnet protocol over Ethernet network (IP)	Easy and high-speed connection by ethernet line to a building management system. Allows access to multiple unit parameters	0500-1800
Modbus over IP and RS485	149B	Bi-directional high-speed communication using Modbus protocol over Ethernet network (IP)	Easy and high-speed connection by ethernet line to a building management system. Allows access to multiple unit parameters	0500-1800
Energy management module, & input contact for refrigerant leak detection	156+	EMM Control board with additional inputs/ outputs. See Energy Management Module option chapter	Extended remote control capabilities (Set-point reset, ice storage end, demand limits, boiler on/off command)	0500-1800
Under voltage relay	159A	Under voltage relay is required in some key markets like UAE to protect the unit against low voltage supply	Electrical protection	0500-1800
Dual relief valves on 3-way valve	194	Three-way valve upstream of dual relief valves on the shell and tubes evaporator	Valve replacement and inspection facilitated without refrigerant loss. Comforms to European standard EN378/BGVD4	0500-1800
Insulation of the evap. In/out ref. lines	256	Thermal insulation of the evaporator entering/leaving refrigerant lines with flexible, UV resistant insulation	Prevents condensation on the evaporator entering/leaving refrigerant	0500-1800
Enviro-Shield anti- corrosion protection	262	Coating by conversion process which modifies the surface of the aluminum producing a coating that is integral to the coil. Complete immersion in a bath to ensure 100% coverage. Minimal heat transfer variation, tested 4000 hours salt spray per ASTM B117	Improved corrosion resistance, recommended for use in moderately corrosive environments	0500-1800
Super Enviro-Shield anti- corrosion protection	263	Extremely durable and flexible epoxy polymer coating applied on micro channel heat exchangers by electro coating process, final UV protective topcoat. Minimal heat transfer variation, tested 6000 hours constant neutral salt spray per ASTM B117, superior impact resistance per ASTM D2794	recommended for use in extremely corrosive environments	0500-1800


OPTIONS

Option	N°	Description	Advantage	Use 30XBV-A
Welded evaporator connection (kit)	266	Victaulic piping connections with welded joints	Easy installation	0500-1800
Evaporator with aluminum jacket	281	Evaporator covered with an aluminum sheet for thermal insulation protection	Improved resistance to aggressive climate conditions	0500-1800
Mexico screw compressor	297	Screw compressor made in Mexico	Mexico screw compressor	0500-1800
Compliance with UAE regulation	318	Additional label on the unit with rated power input, rated current and EER following AHRI 550/590	Compliance with ESMA standard UAE.S 5010-5:2019.	0500-1800
Compliance with Qatar regulation	319	Specific nameplate on the unit with power supply 415 V+/-6%	Compliance with KAHRAMAA regulation in Qatar.	0500-1800
Compliance with Morocco regulation	327	Specifics documents according Morroco regulation	Conformance with Morocco regulations	0500-1800
Delivery with plastic tarp cover	331	Plastic sheeting covering the units, with strapping securing it on the wooden pallet	Allow unit to avoid dust and dirt from the outside environment during stocking and shipping	0500-1800
Power supply 400-3- 60Hz (compliance with SASO regulation)	335	400-3-60Hz power supply	Permits unit connection to 400-3-60Hz power supply	0500-1800

HYDRAULIC MODULE

Typical water circuit diagram

1 Module

Legend

Unit Hydraulic Circuit - Components

- 1 Low heat transfer medium flow rate switch
- Temperature sensor

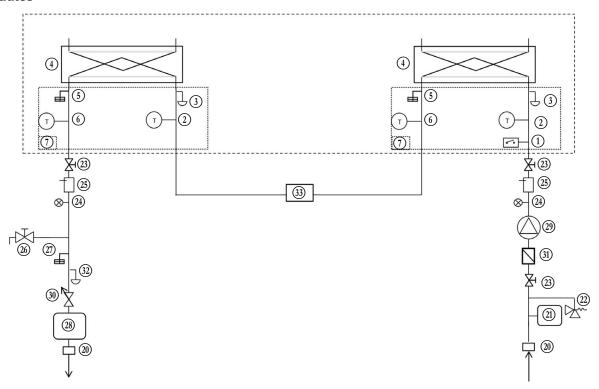
NOTE: Provides temperature measurement at the water exchanger inlet (see Control Manual)

- Heat transfer medium purge on water box
- (3) (4) (5) (6) Heat transfer medium heat exchanger
- Air bleed on water box
- Temperature sensor

NOTE: Provides temperature measurement at the water exchanger outlet (see Control Manual)

Water box

Customer Hydraulic Circuit - Minimum Additional Components


- 20 Flexible Connection
- 21) Expansion Vessel
- 22 Relief Valve
- 3 Shut-off valve
- 24 Pressure gauge
- 25) Well
- 26 Charge valve
- 27 Air bleed
- 28 Buffer tank (if whole hydraulic circuit volume under minimum required water volume enabling reaching full unit refrigerating capacity)
- 29 Pump
- 30) Heat transfer medium flow rate control valve (if fixed speed pump)
- (31) Screen filter (particle size of 1.2mm)
- 32 Heat transfer medium drain tap
- ---- Unit Hydraulic Components

NOTES:

The installation must be protected against frost.

HYDRAULIC MODULE

2 Modules

Legend

Unit Hydraulic Circuit - Components

- 1 Low heat transfer medium flow rate switch
- 2

$\label{thm:constraint} Temperature \ sensor \\ \underline{\textbf{NOTE:}} \ Provides \ temperature \ measurement \ at \ the \ water \ exchanger \ in let$ (see Control Manual)

- Heat transfer medium purge on water box
- Heat transfer medium heat exchanger
- (4) (5) (6) Air bleed on water box
- Temperature sensor

NOTE: Provides temperature measurement at the water exchanger outlet (see Control Manual)

(7) Water box

Customer Hydraulic Circuit - Minimum Additional Components

- (20) Flexible Connection
- (21) Expansion Vessel
- 22 Relief Valve
- 3 Shut-off valve
- 24 Pressure gauge
- ②5 Well
- 26 Charge valve
- 27) Air bleed
- 28) Buffer tank (if whole hydraulic circuit volume under minimum required water volume enabling reaching full unit refrigerating capacity)
- (29)
- ${\mathfrak M}$ Heat transfer medium flow rate control valve (if fixed speed pump)
- 31) Screen filter (particle size of 1.2mm)
- 32 Heat transfer medium drain tap
- 33 Piping between modules

---- Unit Hydraulic Components

The installation must be protected against frost.

Physical data - Single units

COVEY A. C' I. II.			0500	0000	0700	0000	0000	1000	1100	1000	1000	1/50	
30XBV-A - Single Uni	its	_	0500	0600	0700	0800	0900	1000	1100	1200	1300	1450	
Full Load Performances*	Nominal Capacity	kW Ton	494 140	576 I 164	701 l 199	799 I 227	863 I 245	1025 291	1104 314	1202 342	1317 374	1503 l 427	
	EER	kW/kW Btu/Wh	2,87 l 9,76	2,87 l 9,76	2,9 l 9,86	2,94 l 10	2,87 l 9,76	2,87 l 9,76	2,89 l 9,83	2,89 l 9,83	2,91 l 9,89	2,9 l 9,86	
Seasonal Energy Efficiency**	SEER _{12/7°C} Comfort lov temp.	v kWh/kWh	4,62	4,61	4,76	4,73	4,66	4,62	4,72	4,74	4,80	4,73	
	ns cool _{12/7°C}	%	182	182	187	186	184	182	186	187	189	186	
	SEPR _{12/7°C} Process high temp.	kWh/kWh	5,81	5,73	5,75	5,95	5,76	5,81	5,90	5,72	5,78	5,51	
Integrated Part Load	IPLV.SI	kW/kW	4,990	5,040	5,150	5,170	5,060	5,000	5,100	4,920	5,070	4,900	
Values	IPLV.IP	Btu/Wh	17,03	17,26	17,63	17,73	17,35	17,15	17,55	17,03	17,34	16,75	
Refrigerant			R - 134a										
Compressor type			VARIABLE-SPEED DRIVEN, TWIN-SCREW COMPRESSOR										
Nb of compressors /	nb of circuits		2/2										
Structural and Acous	stical Data												
Dimensions													
Length		mm in	5591 220	5591 I 220	6785 I 267	7979 314	7979 314	9175 I 361	10369 408	10363 408	11561 455	12755 502	
Width		mm in	2258 89	2258 89	2258 I 89	2258 89	2258 I 89	2258 I 89	2258 89	2258 I 89	2258 I 89	2258 I 89	
Height		mm in	2325 I 92	2325 I 92	2325 I 92	2325 I 92	2325 I 92	2325 I 92	2325 I 92	2325 I 92	2325 I 92	2325 I 92	
Weights - Standard L	Jnit												
Operating weight ⁽¹⁾		kg lb	4890 l 10781	4929 10867	5268 11614	6108 13466	6204 13677	7000 l 15432	7385 16281	7826 17253	8141 17948	9039 I 19928	
Sound levels - Stand	ard Unit												
Sound Power ⁽²⁾		dB(A)	95,0	98,5	100,0	102,5	100,5	104,0	102,0	104,0	103,0	104,0	
Sound Pressure at 10	m ⁽³⁾	dB(A)	62,5	66,0	67,5	69,5	68,0	71,0	69,0	71,0	70,0	71,0	
Weights + Option 15													
Operating weight ⁽¹⁾		kg lb	4930 10869	4969 10955	5308 11702	6148 13554	6244 13765	7040 15520	7425 16369	7866 17341	8181 18036	9079 20016	
Sound levels + Option	n 15				r	1		r	1		ı		
Sound Power ⁽²⁾		dB(A)	94,5	96,0	98,0	98,0	97,5	98,5	98,5	99,5	99,5	100,0	
Sound Pressure at 10	m ⁽³⁾	dB(A)	62,0	64,0	65,5	65,0	64,5	66,0	65,5	66,5	66,5	67,0	
Frigorific Data													
Refrigerant Charge(1	Refrigerant Charge ⁽¹⁾				R134a	(GWP	= 1430 f	ollowing	AR4 ; 0	DP=0)			
Circuit A		kg lb	45 99	45 99	54 119	73 161	73 161	84 185	83 183	110 243	118 260	113 249	
	teqCO ₂		64	64	77	104	104	120	119	157	169	162	
Circuit B kg lb		42 93	45 99	54 119	65 143	62 137	84 185	83 183	86 190	86 190	113 249		
		teqCO ₂	60	64	77	93	89	120	119	123	123	162	

*

(2)

(3)

In accordance with standard EN14511-3:2022.

In accordance with standard EN14825:2022, average climate.

SEER $_{12/T^*C}$ & $\eta s cool_{12/T^*C}$ SEPR $_{12/T^*C}$ IPLV.SI IPLV.IP (1)

Bold values compliant with Ecodesign regulation (UE) N° 2016/2281 for Comfort Applications Bold values compliant with Ecodesign regulation (UE) N° 2016/2281 for Process Applications Bold values compliant with AHRI standard (Air, Heating & Refrigeration Institute; U.S.A) 551-591. Bold values compliant with AHRI standard (Air, Heating & Refrigeration Institute; U.S.A) 550-590.

Values are guidelines only. Refer to the unit name plate.

In dB ref = 10^{-12} W, A' weighted. Declared noise emission value dissociated in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). Measurement following ISO 9614-1 and certified by Eurovent.

In dB ref = 20μ Pa, 'A' weighted. Declared noise emission value in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). For information, calculated from the sound power Lw(A).

Eurovent certified values

AHRI certified values

CARRIER participates in the ECP programme for LCP-HP Check ongoing validity of certificate: www.eurovent-certification.com

30XBV-A - Single units		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450
Oil Charge ⁽¹⁾				Oil fo	r R134a	Contact	Carrier E	RCD for s	upplying.		
Circuit A	L gal	27 7,1	24 6,3	20 5,3	23 6,1	20 5,3	23 6,1	20 5,3	30 7,9	30 7,9	30 7,9
Circuit B	L gal	27 7,1	24 6,3	20 5,3	23 6,1	20 5,3	23 6,1	20 5,3	20 5,3	20 5,3	30 7,9
Unit Minimum Part Load(4)	%	13	13	13	13	14	12	12	14	13	12
PED Category		IV	IV	IV	IV	IV	IV	IV	IV	IV	IV
Aeraulic Data											
Fans Quantity		7	8	10	12	12	14	16	16	18	20
Maximum Total Air Flow Rate	m³/s gpm	36 572845	41 654680	52 818350	62 982020	62 982020	72 1145690	83 1309360	83 1309360	93 1473030	103 1636700
Maximum Rotation Speed	rpm	950	950	950	950	950	950	950	950	950	950
Hydraulic Data											
Volume in the unit	L gal	85 22	85 22	99 26	121 32	131 35	157 41	157 41	172 45	172 45	188 50
Max. operating pressure - hydraulic circuit	kPa psi	1000 I 145	1000 I 145	1000 I 145	1000 I 145	1000 l 145					
Min. hydraulic flow rate	L/s l gpm	7 111	7 111	8 127	10 159	11 174	17 269	17 269	18 285	18 285	18 285
Max. hydraulic flow rate	L/s l gpm	48 761	48 761	59 935	68 1078	76 1205	125 1981	125 1981	133 2108	133 2108	133 2108
Hydraulic Connections											
Inlet Connection Diameter	mm in	127 5	127 5	152,4 l 6	152,4 l 6	152,4 l 6	152,4 6	152,4 6	152,4 6	152,4 6	152,4 6
Outlet Connection Diameter	mm in	127 5	127 5	152,4 6	152,4 6	152,4 6	152,4 6	152,4 6	152,4 6	152,4 6	152,4 6
Chassis Paint Color						Color c	ode RAL 7	035			

⁽¹⁾ Values are guidelines only. Refer to the unit name plate.
(4) For standard conditions. Depending on operating conditions, units might have a different minimum part load or cycle.

Physical data - Duplex units

			16	00	18	00		
30XBV-A - Duplex ur	nits		1600_1	1600_2	1800_1	1800_2		
Full Load	Nominal Capacity	kW Ton	1595	454	1800	512		
Performances*	EER	kW/kW Btu/Wh	2,9	9,86	2,85	9,69		
Seasonal Energy	$SEER_{12/7^\circ\mathtt{C}}$ Comfort low temp.	kWh/kWh	4,7	76	4,	64		
Efficiency**	ns cool _{12/7°C}	%	18	37	18	33		
	$SEPR_{12/7^\circ\mathtt{C}}$ Process high temp.	kWh/kWh	5,9	94	5,63			
Integrated Part Load	IPLV.SI	kW/kW	5,:	13	4,	93		
Values	IPLV.IP	Btu/Wh	17,	62	17,	28		
Refrigerant								
Compressor type			VARIABLE-SPEED DRIVEN, TWIN-SCREW COMPRESSOR					
Nb of compressors /	nb of circuits			4,	/4			
Structural and Acou	ıstical Data							
Dimensions						r		
Length		mm in	7979 314	7979 314	7979 314	7979 314		
Length - Module 1 + M	Module 2	mm in	15958	1 628	15958	3 628		
Width		mm in	2258 89	2258 89	2258 89	2258 89		
Height		mm in	2325 92	2325 92	2325 92	2325 92		
Weights - Standard	Unit					Γ		
Operating weight ⁽¹⁾		kg lb	6110 13470	6113 13477	6119 13490	6119 13490		
Sound levels - Stand	lard Unit							
Sound Power ⁽²⁾		dB(A)	102,0	102,0	103,5	103,5		
Sound Pressure at 10		dB(A)	68,5	68,5	70,5	70,5		
Weights + Option 15								
Operating weight ⁽¹⁾		kg lb	6150 13558	6153 13565	6159 13578	6159 13578		
Sound levels + Optio	on 15		100.0					
Sound Power ⁽²⁾	(2)	dB(A)	100,0	100,0	101,0	101,0		
Sound Pressure at 10	m ⁽³⁾	dB(A)	66,5	66,5	67,5	67,5		
Frigorific Data	1)		D10	/ (ONE 1/00/				
Refrigerant Charge	1)			•	ollowing AR4 ; ODI			
Module 1 - Circuit A		kg lb teqCO₂	73		73			
		kg lb	65		62			
Module 1 - Circuit B	Module 1 - Circuit B —		9			9		
		teqCO₂ kg∣lb	73 161		73	161		
Module 2 - Circuit A	Module 2 - Circuit A teqC		104		104			
kg I			65	143	62 137			
Module 2 - Circuit B		teqCO ₂	9	3	8	9		
	In accordance with standard CN1	4E11 2:2022						

(3)

SEPR_{12/7°C}

IPLV.SI IPLV.IP (1) (2)

In accordance with standard EN14511-3:2022.

In accordance with standard EN14825:2022, average climate.

Bold values compliant with Ecodesign regulation (UE) N $^\circ$ 2016/2281 for Comfort Applications Bold values compliant with Ecodesign regulation (UE) N $^\circ$ 2016/2281 for Process Applications

Bold values compliant with AHRI standard (Air-Conditioning, Heating, and Refrigeration Institute; U.S.A) 551/591 (SI). Bold values compliant with AHRI standard (Air-Conditioning, Heating, and Refrigeration Institute; U.S.A) 550/590 (I-P). Values are guidelines only. Refer to the unit name plate.

In dB ref = 10^{-12} W, 'A' weighted. Declared noise emission value dissociated in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). Measurement following ISO 9614-1 and certified by Eurovent.

In dB ref = 20 μ Pa, 'A' weighted. Declared noise emission value in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). For information, calculated from the sound power Lw(A).

 $\mathsf{SEER}_{12/7^\circ\mathtt{C}}$ & $\mathsf{\eta s}\ \mathsf{cool}_{12/7^\circ\mathtt{C}}$

Eurovent certified values

AHRI certified values

CARRIER participates in the ECP programme for LCP-HP Check ongoing validity of certificate: www.eurovent-certification.com

COVEY A. D. L		16	00	18	00	
30XBV-A - Duplex units		1600_1	1600_2	1800_1	1800_2	
Oil Charge ⁽¹⁾						
Module 1 - Circuit A	L gal	23	6,1	20	5,3	
Module 1 - Circuit B	L I gal	23	6,1	20	1 5,3	
Module 2 - Circuit A	L I gal	23	6,1	20	1 5,3	
Module 2 - Circuit B	L gal	23	6,1	20	1 5,3	
Unit Minimum Part Load(4)	%	-	7		7	
PED Category		יו	V	Г	V	
Aeraulic Data						
Fans Quantity		2	4	24		
Maximum Total Air Flow Rate	m³/s gpm	124 19	964040	124 19	964040	
Maximum Rotation Speed	rpm	95	50	9:	50	
Hydraulic Data						
Volume in the unit	L I gal	242	l 64	262	l 70	
Max. operating pressure - hydraulic circuit	kPa psi	1000	145	1000	145	
Min. hydraulic flow rate	L/s gpm	20	317	20	317	
Max. hydraulic flow rate	L/s gpm	144	2282	161	2552	
Hydraulic Connections						
Inlet Connection Diameter	mm in	152,4 6	152,4 6	152,4 6	152,4 6	
Outlet Connection Diameter	mm in	152,4 6	152,4 6	152,4 6	152,4 6	
Chassis Paint Color		Color code RAL 7035				

 ⁽¹⁾ Values are guidelines only. Refer to the unit name plate.
 (4) For standard conditions. Depending on operating conditions, units might have a different minimum part load or cycle.

AHRI(1) capacity ratings (IP)

	Сара	acity			Efficiency		
Unit size	Tons	kW	Total power (Btu/h)	Fan power (Btu/h)	EER (Btu/W.h)	IPLV (Btu/W.h)	
0500	139	489	1668517	66536	9,7	16,1	
0600	162	569	1941485	76090	9,7	16,4	
0700	196	691	2357761	95198	9,7	16,6	
0800	224	788	2688735	114305	9,8	16,7	
0900	243	853	2910521	114305	9,7	16,4	
1000	289	1016	3466694	133413	9,7	16,3	
1100	311	1092	3726013	152180	9,7	16,6	
1200	338	1190	4060399	152180	9,8	16,2	
1300	370	1301	4439142	171287	9,8	16,5	
1450	423	1486	5070381	190395	9,8	16,0	
1600	448	1577	5380882	228269	9,8	16,5	
1800	507	1783	6083774	228269	9,7	16,4	

EER — Energy Efficiency Ratio

(1) Air-Conditioning, Heating, and Refrigeration Institute (U.S.A.).

Certified in accordance with the AHRI Air-Cooled Water-Chilling Packages Certification Program, which is based on AHRI Standard 550/590 (I-P) and AHRI Standard 551/591 (SI). Certified units may be found in the AHRI Directory at www.ahridirectory.org

Standard rating conditions are as follows:

Cooler Conditions:

Leaving water temperature: 44.00°F (6.67°C) as per AHRI 550/590 (I-P) / 7°C as per AHRI 551/591 (SI) Entering water temperature: 54.00°F (12.22°C) as per AHRI 550/590 (I-P) / 12°C as per AHRI 551/591 (SI) Flow rate: Rated water flow is determined by the water temperatures at the rated capacity. **Fouling Factor:**

 $0.000100 \, hr \, x \, sq \, ft \, ^{\circ}F/Btu \, (0.0176 \, m^2.K/kW) \, as \, per \, AHRI \, 550/590 \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, m^2.K/kW \, as \, per \, AHRI \, 551/591 \, (SI) \, (I-P) \, / \, 0.0180 \, (I-P) \, (I-P) \, (I-P) \, / \, 0.0180$ Condenser Conditions:

Entering air temperature: 95.0°F (35.0°C)

30XBV-A Single units + Option 335 + 16

20VDV A Cingle units + On		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450	
30XBV-A Single units + Op	tion 335 + 16		USUU	0600	0700	0800	บลบบ	1000	1100	1200	1300	1450
Full Load Performances*	Nominal Capacity	kW Ton	489 I 139	569 162	691 196	788 I 224	853 I 243	1016 I 289	1092 I 311	1190 l 338	1301 370	1486 I 423
	EER	kW/kW Btu/Wh	2,84 l 9,66	2,85 l 9,69	2,85 9,69	2,88 l 9,79	2,85 l 9,69	2,85 l 9,69	2,85 l 9,69	2,87 l 9,76	2,88 l 9,79	2,89 l 9,83
Refrigerant							R - 1	34a			,	
Compressor type			VARIABLE-SPEED DRIVEN, TWIN-SCREW COMPRESSOR									
Nb of compressors / nb of	circuits						2,	/2				
Structural and Acoustical	Data											
Dimensions												
Length		mm in	5591 l 220	5591 I 220	6785 l 267	7979 314	7979 314	9175 361	10369 408	10363 408	11561 455	12755 502
Width		mm in	2258 I 89	2258 I 89	2258 89	2258 I 89	2258 I 89	2258 89	2258 I 89	2258 I 89	2258 I 89	2258 I 89
Height		mm in	2325 I 92	2325 I 92	2325 92	2325 I 92	2325 I 92	2325 92	2325 92	2325 92	2325 I 92	2325 I 92
Weights												
Operating weight ⁽¹⁾		kg lb	4890 10781	4929 10867	5268 11614	6108 13466	6204 13677	7000 15432	7385 16281	7826 17253	8141 17948	9039 19928
Sound levels - Option 335	+ 16											
Sound Power ⁽²⁾		dB(A)	98,5	100,5	102,0	104,0	102,5	105,5	103,5	105,0	104,5	105,5
Sound Pressure at 10 m ⁽³⁾		dB(A)	66,0	68,0	69,5	71,5	70,0	72,5	71,0	72,0	71,5	72,5
Sound levels - Option 335	+ 16 + 15											
Sound Power ⁽²⁾		dB(A)	98,0	99,0	100,5	101,0	100,5	101,5	102,0	102,5	102,5	103,0
Sound Pressure at 10 m ⁽³⁾		dB(A)	65,5	66,5	68,0	68,0	68,0	69,0	69,0	69,5	69,5	70,0
Frigorific Data												
Refrigerant Charge ⁽¹⁾					R134a	(GWP	= 1430 f	ollowing	AR4;0	DP=0)		
Circuit A		kg lb	45 99	45 99	54 119	73 161	73 161	84 185	83 183	110 l 243	118 260	113 l 249
		teqCO ₂	64	64	77	104	104	120	119	157	169	162
Circuit B		kg lb	42 93	45 99	54 119	65 143	62 137	84 185	83 183	86 I 190	86 I 190	113 249
		teqCO ₂	60	64	77	93	89	120	119	123	123	162
Oil Charge ⁽¹⁾	Oil Charge ⁽¹⁾			(Dil for R	134a. Co	ntact Ca	rrier ER	CD for s	upplying	ļ.	
Circuit A		L gal	27 7,1	24 6,3	20 l 5,3	23 6,1	20 l 5,3	23 6,1	20 l 5,3	30 l 7,9	30 l 7,9	30 I 7,9
Circuit B		L gal	27 7,1	24 6,3	20 5,3	23 6,1	20 5,3	23 6,1	20 l 5,3	20 l 5,3	20 l 5,3	30 I 7,9
Unit Minimum Part Load(4))	%	13	13	13	13	14	12	12	14	13	12
PED Category			IV	IV	IV	IV	IV	IV	IV	IV	IV	IV

In accordance with standard AHRI 550-590 (Entering/Leaving Heat Transfer Medium Temperature = $54^{\circ}F/44^{\circ}F$ / Outside Air Temperature = $95^{\circ}F$ / Evaporator Fouling Factor = 0.0001 [hr.sqft.°F/BTU] / Heat Transfer Medium = Pure Water).
(1) Values are guidelines only. Refer to the unit name plate.

⁽⁴⁾ For standard conditions. Depending on operating conditions, units might have a different minimum part load or cycle.

AHRI certified values

⁽²⁾ In dB ref = 10-12 W, 'A' weighted. Declared noise emission value dissociated in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). Measurement following

In dB ref = 20 μ Pa, 'A' weighted. Declared noise emission value in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). For information, calculated from the sound power Lw(A).

30XBV-A Single units + Option 335 + 16		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450
Aeraulic Data											
Fans Quantity		7	8	10	12	12	14	16	16	18	20
Maximum Total Air Flow Rate	m³/s l gpm	43 687421	50 785624	62 982030	74 1178436	74 1178436	87 1374842	99 1571248	99 1571248	112 1767654	124 1964060
Maximum Rotation Speed	rpm	1140	1140	1140	1140	1140	1140	1140	1140	1140	1140
Hydraulic Data											
Volume in the unit	L gal	85 22	85 22	99 26	121 32	131 35	157 41	157 41	172 45	172 45	188 50
Max. operating pressure - hydraulic circuit	kPa psi	1000 l 145	1000 l 145	1000 l 145	1000 I 145	1000 l 145	1000 145	1000 l 145	1000 l 145	1000 I 145	1000 l 145
Min. hydraulic flow rate	L/s gpm	7 111	7 111	8 127	10 159	11 174	17 269	17 269	18 285	18 285	18 285
Max. hydraulic flow rate	L/s gpm	48 761	48 761	59 935	68 1078	76 1205	125 1981	125 1981	133 2108	133 2108	133 2108
Hydraulic Connections											
Inlet Connection Diameter	mm in	127 5	127 5	152,4 l 6	152,4 6	152,4 6	152,4 l 6	152,4 6	152,4 6	152,4 6	152,4 6
Outlet Connection Diameter	mm in	127 5	127 5	152,4 l 6	152,4 6	152,4 6	152,4 l 6	152,4 6	152,4 6	152,4 6	152,4 6
Chassis Paint Color		Color code RAL 7035									

Physical data - Duplex units + option 335 + 16

COVEY A -			16	00	18	00				
30XBV-A - Duplex	units + option 335 + 16		1600_1	1600_2	1800_1	1800_2				
Full Load	Nominal Capacity	kW	1577	448	1783	l 507				
Performances*	EER	kW/kW	2,87	9,76	2,86	1 9,72				
Refrigerant				R - 1	134a					
Compressor type			VARIABLE-SPEED DRIVEN, TWIN-SCREW COMPRESSOR							
Nb of compressor	s / nb of circuits			4	/4					
Structural and Ac	oustical Data									
Dimensions										
Length		mm in	7979 314	7979 314	7979 314	7979 314				
Length - Module 1 +	- Module 2	mm in	15958	l 628	15958	3 628				
Width		mm in	2258 89	2258 89	2258 89	2258 89				
Height		mm in	2325 92	2325 92	2325 92	2325 92				
Weights										
Operating weight $^{(1)}$		kg lb	6110 13470	6113 13477	6119 13490	6119 13490				
Sound levels - Sta	ndard Unit									
Sound Power ⁽²⁾		dB(A)	104	4,5	105,5					
Sound Pressure at 3	10 m ⁽³⁾	dB(A)	71	,0	72	2,0				
Sound levels + Op	tion 15									
Sound Power ⁽²⁾		dB(A)	103,0		10-	4,0				
Sound Pressure at 3	10 m ⁽³⁾	dB(A)	69	,5	70),5				
Frigorific Data										
Refrigerant Charg	(e ⁽¹⁾		R134	4a (GWP = 1430 f	ollowing AR4 ; OD	P=0)				
Module 1 - Circuit A		kg lb	73	161	74	163				
Module 1 - Circuit A	1	teqCO₂	10)4	10	06				
Module 1 - Circuit B	,	kg lb	59	130	60	132				
	,	teqCO₂	8	4	8	6				
Module 2 - Circuit A		kg lb	73	161	74	163				
Module 2 - Gircuit A	1	teqCO₂	10)4	10	06				
Module 2 - Circuit B)	kg lb	59	130	60	132				
)	teqCO₂	8	4	8	6				
Oil Charge ⁽¹⁾										
Module 1 - Circuit A	Module 1 - Circuit A L		23	6,1	20	5,3				
Module 1 - Circuit B L ga		L I gal	23	6,1	20	5,3				
Module 2 - Circuit A L gal		L I gal	23	6,1	20	5,3				
Module 2 - Circuit B	3	L I gal	23	6,1	20 5,3					
Unit Minimum Par	t Load ⁽⁴⁾	%	7	·	7	7				
PED Category			IV	/	יו	V				

In accordance with standard 550/590 (I-P) 54/44 95F + ff 0,0001.

⁽⁴⁾ For standard conditions. Depending on operating conditions, units might have a different minimum part load or cycle.

AHRI certified values

⁽¹⁾ Values are guidelines only. Refer to the unit name plate.

⁽²⁾ In dB ref = 10-12 W, 'A' weighted. Declared noise emission value dissociated in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). Measurement following ISO 9614-1.

⁽³⁾ In dB ref = 20 µPa, 'A' weighted. Declared noise emission value in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). For information, calculated from the sound power Lw(A).

20VDV A. D		16	00	18	00		
30XBV-A - Duplex units + option 335 + 16		1600_1	1600_2	24 149 2356872 1140 262 70 1000 145 20 317 161 2552 152,4 6	1800_2		
Aeraulic Data							
Fans Quantity		2	4	2	4		
Maximum Total Air Flow Rate	m³/s gpm	149 2	356872	149 2	356872		
Maximum Rotation Speed	rpm	11	1140 1140				
Hydraulic Data							
Volume in the unit	L gal	242	. I 70				
Max. operating pressure - hydraulic circuit	kPa psi	1000	145	1000	145		
Min. hydraulic flow rate	L/s gpm	20	317	20	317		
Max. hydraulic flow rate	L/s gpm	144	2282	161	2552		
Hydraulic Connections							
Inlet Connection Diameter	mm l in	152,4 6	152,4 6	152,4 6	152,4 6		
Outlet Connection Diameter	mm l in	152,4 6	152,4 6	152,4 6	152,4 6		
Chassis Paint Color			Color code	RAL 7035			

PHYSICAL DATA - VARIABLE SPEED FANS (AC) - OPTION 17A

30XBV-A Units	- Option 17A		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450	1600	1800
Full Load Performances*	Nominal Capacity	kW Ton	498 142	580 I 165	705 l 200	803 I 228	869 I 247	1034 294	1112 316	1212 345	1327 377	1516 431	1605 I 456	1816 516
	EER	kW/kW Btu/Wh	2,88 l 9,79	2,88 l 9,79	2,89 I 9,83	2,94 l 10	2,88 l 9,79	2,88 l 9,79	2,89 I 9,83	2,9 l 9,86	2,91 l 9,89	2,9 l 9,86	2,9 l 9,86	2,86 l 9,72
Seasonal Energy Efficiency**	SEER _{12/7°C} Comfort low temp.	kWh/kWh	4,97	5,00	5,17	5,16	5,07	5,02	5,05	4,99	5,08	4,96	5,10	4,91
	ns cool _{12/7°C}	%	196	197	204	204	200	198	199	197	200	196	201	193
	SEPR _{12/7°C} Process high temp.	kWh/kWh	6,07	6,04	6,08	6,26	6,06	6,15	6,22	5,82	5,87	5,56	6,22	5,83
Integrated Part	IPLV.SI	kW/kW	5,474	5,539	5,665	5,689	5,568	5,514	5,614	5,434	5,528	5,377	5,624	5,393
Load Values	IPLV.IP	Btu/Wh	18,61	18,83	19,26	19,34	18,93	18,75	19,09	18,48	18,8	18,28	19,12	18,34
30XBV-A Units - 17A	- Options 335 + 16 +		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450	1600	1800
Full Load	Nominal Capacity	kW Ton	489 139	569 I 162	691 196	787 224	853 l 243	1015 289	1091 310	1189 338	1300 l 370	1486 423	1575 448	1782 I 507
Performances***	EER	kW/kW Btu/Wh	2,86 l 9,72	2,86 l 9,72	2,87 l 9,76	2,92 l 9,93	2,86 l 9,72	2,86 l 9,72	2,87 l 9,76	2,88 l 9,79	2,89 I 9,83	2,89 l 9,83	2,9 l 9,86	2,87 l 9,76
30XBV-A Units - 17A + 263	- Options 335 + 16 +		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450	1600	1800
Full Load	Nominal Capacity	kW Ton	472 134	552 l 157	676 l 192	786 I 223	832 I 237	993 I 282	1064 303	1164 331	1298 369	1484 422	1572 447	1756 I 499
Performances***	EER	kW/kW Btu/Wh	2,87 l 9,76	2,86 l 9,72	2,87 l 9,76	2,89 l 9,83	2,87 l 9,76	2,86 l 9,72	2,88 l 9,79	2,87 l 9,76	2,87 l 9,76	2,87 l 9,76	2,87 l 9,76	2,86 l 9,72
Sound levels														
Sound Power(1)		dB(A)	97,5	100,0	101,5	103,0	102,0	105,0	103,0	105,0	104,5	105,5	103,0	105,5
Sound Pressure	at 10 m ⁽²⁾	dB(A)	65,0	67,5	69,0	70,5	69,0	72,0	70,0	72,0	71,5	72,5	69,5	72,0
Sound levels + 0	Option 15													
Sound Power ⁽¹⁾		dB(A)	97,0	98,5	100,0	99,5	100,0	100,5	100,5	102,0	102,0	103,0	101,5	103,5
Sound Pressure	at 10 m ⁽²⁾	dB(A)	64,5	66,0	67,5	67,0	67,0	68,0	67,5	69,0	69,0	70,0	68,0	70,0

In accordance with standard EN14511-3:2022.

In accordance with standard EN14825:2022, average climate.

In accordance with standard AHRI 550-590 (Entering/Leaving Heat Transfer Medium Temperature = $54^{\circ}F/44^{\circ}F/0$ utside Air Temperature = $95^{\circ}F/E$ Evaporator Fouling Factor = 0.0001 [hr.sqft. $^{\circ}F/BTU$] / Heat Transfer Medium = Pure Water). Bold values compliant with Ecodesign regulation (UE) N° 2016/2281 for Comfort Applications

 $\mathsf{SEER}_{12/7^\circ\mathtt{C}} \ \& \ \mathsf{\eta s} \ \mathsf{cool}_{12/7^\circ\mathtt{C}}$ SEPR_{12/7°C} Bold values compliant with Ecodesign regulation (UE) N° 2016/2281 for Process Applications IPLV.SI Bold values compliant with AHRI standard (Air, Heating & Refrigeration Institute; U.S.A) 551-591. IPLV.IP Bold values compliant with AHRI standard (Air, Heating & Refrigeration Institute; U.S.A) 550-590.

 $In \ dB \ ref = 10^{-12} \ W, \ A' \ weighted. \ Declared noise emission value dissociated in accordance with ISO 4871 with an uncertainty of +/-3 and -/-3 are the second of the seco$ dB(A). Measurement following ISO 9614-1 and certified by Eurovent. In dB ref = 20 μ Pa, 'A' weighted. Declared noise emission value in accordance with ISO 4871 with an uncertainty of +/-3 dB(A). For

(2)

information, calculated from the sound power Lw(A).

EUROVENT CERTIFIED PERFORMANCE CARRIER participates in the ECP programme for LCP-HP Check ongoing validity of certificate: www.eurovent-certification.com

(1)

Eurovent certified values

CERTIFIED® Chillers ards 550/590 and 551/591

AHRI certified values

PHYSICAL DATA - VARIABLE SPEED FANS (AC) - OPTION 17A

AHRI(1) capacity ratings (IP) options 335 + 16 + 17A

	Сара	acity			Efficiency		
Unit size	Tons	kW	Total power (Btu/h)	Fan power (Btu/h)	EER (Btu/W.h)	IPLV (Btu/W.h)	
0500	139	489	1668517	59712	9,7	18,6	
0600	162	569	1941485	71654	9,7	18,8	
0700	196	691	2357761	82914	9,8	19,1	
0800	224	787	2685323	92468	9,9	19,2	
0900	243	853	2910521	102022	9,7	18,8	
1000	289	1015	3463282	120447	9,7	18,7	
1100	310	1091	3722601	127613	9,8	19,1	
1200	338	1189	4056987	149109	9,8	18,5	
1300	370	1300	4435730	160369	9,8	18,8	
1450	423	1486	5070381	193125	9,8	18,3	
1600	448	1575	5374058	194490	9,9	19,0	
1800	507	1782	6080362	223834	9,8	18,2	

EER — Energy Efficiency Ratio

(1) Air-Conditioning, Heating, and Refrigeration Institute (U.S.A.).

NOTES:

1. Certified in accordance with the AHRI Air-Cooled Water-Chilling Packages Certification Program, which is based on AHRI Standard 550/590 (I-P) and AHRI Standard 551/591 (SI). Certified units may be found in the AHRI Directory at www.ahridirectory.org

2. Standard rating conditions are as follows:

Cooler Conditions:

Leaving water temperature: $44.00^{\circ}F$ ($6.67^{\circ}C$) as per AHRI 550/590 (I-P) / $7^{\circ}C$ as per AHRI 551/591 (SI) Entering water temperature: $54.00^{\circ}F$ ($12.22^{\circ}C$) as per AHRI 550/590 (I-P) / $12^{\circ}C$ as per AHRI 551/591 (SI) Flow rate: Rated water flow is determined by the water temperatures at the rated capacity. Fouling Factor:

 $0.000100 \, hr \, x \, sq \, ft \, ^cF/Btu \, (0.0176 \, m^2.K/kW) \, as per AHRI 550/590 \, (I-P) / 0.0180 \, m^2.K/kW \, as per AHRI 551/591 \, (SI) Condenser Conditions:$

Entering air temperature: 95.0°F (35.0°C)

ELECTRICAL DATA (50Hz VERSION)

Electrical data - Standard units

30XBV-A Single Units		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450
Power circuit supply										•	
Nominal voltage	V-ph-Hz	400-3-50									
Voltage range	V	360-440									
Input power ⁽¹⁾											
Maximum operating input power ⁽²⁾	kW	225	277	314	359	395	453	494	528	568	642
Operating current draw ⁽¹⁾											
Maximum Current (Un) ⁽²⁾	Α	350	431	488	558	614	704	768	820	882	998
Maximum Current (Un-10%)	Α	374	471	513	599	646	768	807	888	916	1027
Power factor at maximum input power ⁽¹⁾						0,91	-0,93				
Displacement Power Factor (Cos. Phi)(3)						>0	,98				
Total current harmonic distortion rate (THDi) ⁽⁴⁾	%					35-	45%				
Start-up current ⁽¹⁾											
Maximum Current (Un) ⁽⁵⁾	Α	193	252	280	275	290	396	427	436	457	570

COVDV A D and and the last		16	600	18	800		
30XBV-A Duplex Units		1600_1	1600_2	1800_1	1800_2		
Power circuit supply							
Nominal voltage	V-ph-Hz		400-	-3-50			
Voltage range	V		360	-440			
Input power ⁽¹⁾			,	,			
Maximum operating input power ⁽²⁾	kW	359	359	395	395		
Operating current draw ⁽¹⁾							
Maximum Current (Un) ⁽²⁾	Α	558	558	614	614		
Maximum Current (Un-10%)	Α	599	599	646	646		
Power factor at maximum input power(1)			0,91	-0,93			
Displacement Power Factor (Cos. Phi)(3)			>0	,98			
Total current harmonic distortion rate (THDi) ⁽⁴⁾	%		35-	45%			
Start-up current ⁽¹⁾							
Maximum Current (Un)(5)	Α	A 275 275 290 290					

⁽¹⁾ Values obtained at operation with maximum operating input power.

Note

Control circuit is supplied with 24V via internal transformer.

⁽²⁾ Values given on the unit nameplate.

⁽³⁾ Values decrease when load lowers.

⁽⁴⁾ May vary according to the installation's short circuit ratio. The exact values depend on the short-circuit ratio (Rsce).

THDI increases when load lowers. It's necessary to consider a degradation of the values when the input power drops. The highest impact on the installation occurs when the current is maximum.

Thereore compliance of the installation regarding voltage harmonic distortion at PCC (per IEC61000-2-4 or other standard) shall be usually checked at max load in order to cover all load conditions.

⁽⁵⁾ Starting current of the smallest compressor + Operating current of the biggest compressor + Fan current.

ELECTRICAL DATA (50Hz VERSION)

Electrical Data of Units + Option 16

30XBV-A Single Units + Option 16		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450
Power circuit supply											
Nominal voltage	V-ph-Hz	400-3-50									
Voltage range	V	360-440									
Input power ⁽¹⁾											
Maximum operating input power ⁽²⁾	kW	238	294	332	382	419	481	525	559	601	678
Operating current draw ⁽¹⁾											
Maximum Current (Un) ⁽²⁾	Α	370	457	516	593	651	747	815	868	934	1054
Maximum Current (Un-10%)	Α	396	499	543	637	685	816	857	940	977	1098
Power factor at maximum input power ⁽¹⁾						0,91	-0,93				
Displacement Power Factor (Cos. Phi)(3)						>0	,98				
Total current harmonic distortion rate (THDi) ⁽⁴⁾	%					35-	45%				
Start-up current(1)											
Maximum Current (Un) ⁽⁵⁾	Α	203	265	294	292	308	417	451	460	483	598

		16	600	18	00			
30XBV-A Duplex Units + Option 16		1600_1	1600_2	1800_1	1800_2			
Power circuit supply				•				
Nominal voltage	V-ph-Hz		400-	·3-50				
Voltage range	V		360	-440				
Input power ⁽¹⁾								
Maximum operating input power ⁽²⁾	kW	382	382	419	419			
Operating current draw ⁽¹⁾								
Maximum Current (Un) ⁽²⁾	Α	593	593	651	651			
Maximum Current (Un-10%)	Α	637	637	685	685			
Power factor at maximum input power ⁽¹⁾			0,91	-0,93				
Displacement Power Factor (Cos. Phi)(3)			>0	,98				
Total current harmonic distortion rate (THDi) ⁽⁴⁾	%		35-	45%				
Start-up current ⁽¹⁾								
Maximum Current (Un) ⁽⁵⁾	Α	292 292 308 308						

⁽¹⁾ Values obtained at operation with maximum operating input power.

 ⁽²⁾ Values given on the unit nameplate.
 (3) Values decrease when load lowers.
 (4) May vary according to the installation's short circuit ratio. The exact values depend on the short-circuit ratio (Rsce). THDi increases when load lowers. It's necessary to consider a degradation of the values when the input power drops. The highest impact on the installation occurs when the current is maximum.

Therefore compliance of the installation regarding voltage harmonic distortion at PCC (per IEC61000-2-4 or other standard) shall be usually checked at max load in order to cover all load conditions.

 $^{(5) \}quad \text{Starting current of the smallest compressor} + \text{Operating current of the biggest compressor} + \text{Fan current}.$

ELECTRICAL DATA (400V-3PH-60Hz POWER SUPPLY) - OPTION 335 + 16

Electrical Data of Units + Option 335 + 16

30XBV-A Single Units + Options 335 + 16		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450
Power circuit supply											
Nominal voltage	V-ph-Hz	400-3-60									
Voltage range	٧	360-440									
Input power ⁽¹⁾											
Maximum operating input power ⁽²⁾	kW	251	309	351	403	441	507	554	588	635	716
Operating current draw ⁽¹⁾											
Maximum Current (Un) ⁽²⁾	Α	390	480	545	626	685	788	861	914	987	1112
Maximum Current (Un-10%)	Α	415	522	571	671	718	856	902	986	1029	1156
Power factor at maximum input power ⁽¹⁾					•	0,91	-0,93				
Displacement Power Factor (Cos. Phi) ⁽³⁾						>0	,98				
Total current harmonic distortion rate (THDi) ⁽⁴⁾	%					35-	45%				
Start-up current ⁽¹⁾											
Maximum Current (Un) ⁽⁵⁾	Α	213	276	308	309	325	438	473	483	509	627

		16	00	180	00	
30XBV-A - Duplex Units + Options 335 + 16		1600_1	1600_2	1800_1	1800_2	
Power circuit supply						
Nominal voltage	V-ph-Hz		400-	-3-60		
Voltage range	٧		360	-440		
Input power ⁽¹⁾		-				
Maximum operating input power ⁽²⁾	kW	403	403	441	441	
Operating current draw ⁽¹⁾						
Maximum Current (Un) ⁽²⁾	Α	626	626	685	685	
Maximum Current (Un-10%)	Α	671	671	718	718	
Power factor at maximum input power(1)			0,91	-0,93		
Displacement Power Factor (Cos. Phi)(3)			>0	,98		
Total current harmonic distortion rate (THDi) ⁽⁴⁾	%		35	45%		
Start-up current ⁽¹⁾						
Maximum Current (Un)(5)	Α	A 309 309 325 325				

⁽¹⁾ Values obtained at operation with maximum operating input power.

⁽²⁾ Values given on the unit nameplate.(3) Values decrease when load lowers.

⁽⁴⁾ May vary according to the installation's short circuit ratio. The exact values depend on the short-circuit ratio (Rsce).

THDi increases when load lowers. It's necessary to consider a degradation of the values when the input power drops.

The highest impact on the installation occurs when the current is maximum.

Therefore compliance of the installation regarding voltage harmonic distortion at PCC (per IEC61000-2-4 or other standard) shall be usually checked at max load in order to cover all load conditions.

⁽⁵⁾ Starting current of the smallest compressor + Operating current of the biggest compressor + Fan current.

ELECTRICAL DATA - VARIABLE SPEED FANS (AC) - OPTION 17A

Electrical Data of Units + Option 17A

30XBV-A - Single Units - Option 17A		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450
Power circuit supply											
Nominal voltage	V-ph-Hz					400-	3-50				
Voltage range	V	360-440									
Input power ⁽¹⁾											
Maximum operating input power ⁽²⁾	kW	230	283	320	368	405	465	507	539	580	655
Operating current draw ⁽¹⁾											
Maximum Current (Un) ⁽²⁾	Α	365	451	509	584	643	738	804	857	922	1040
Maximum Current (Un-10%)	Α	391	494	536	628	676	806	845	929	965	1084
Power factor at maximum input power ⁽¹⁾				•	`	0,91	-0,93		,		
Displacement Power Factor (Cos. Phi)(3)						>0	,98				
Total current harmonic distortion rate (THDi) ⁽⁴⁾	%					35-	45%				
Start-up current ⁽¹⁾											
Maximum Current (Un) ⁽⁵⁾	Α	200	262	290	288	304	412	445	455	477	591

20VPV 4 P - - - - - - - - - -		16	600	18	00
30XBV-A - Duplex Units - Option 17A		1600_1	1600_2	1800_1	1800_2
Power circuit supply					
Nominal voltage	V-ph-Hz		400-	3-50	
Voltage range	٧		360	-440	
Input power ⁽¹⁾					
Maximum operating input power ⁽²⁾	kW	368	368	405	405
Operating current draw ⁽¹⁾					
Maximum Current (Un)(2)	Α	584	584	643	643
Maximum Current (Un-10%)	Α	628	628	676	676
Power factor at maximum input power ⁽¹⁾			0,91	-0,93	
Displacement Power Factor (Cos. Phi)(3)			>0	,98	
Total current harmonic distortion rate (THDi) ⁽⁴⁾	%		35-	45%	
Start-up current(1)					
Maximum Current (Un) ⁽⁵⁾	Α	288	288	304	304

⁽¹⁾ Values obtained at operation with maximum operating input power.

⁽²⁾ Values given on the unit nameplate.(3) Values decrease when load lowers.

⁽⁴⁾ May vary according to the installation's short circuit ratio. The exact values depend on the short-circuit ratio (Rsce).

THDi increases when load lowers. It's necessary to consider a degradation of the values when the input power drops.

The highest impact on the installation occurs when the current is maximum.

Therefore compliance of the installation regarding voltage harmonic distortion at PCC (per IEC61000-2-4 or other standard) shall be usually checked at max load in order to cover all load conditions.

 $^{(5) \}quad \text{Starting current of the smallest compressor} + \text{Operating current of the biggest compressor} + \text{Fan current.}$

ELECTRICAL DATA - VARIABLE SPEED FANS (AC) - OPTION 17A

Electrical Data of Units + Options 16 + 17A

30XBV-A - Single Units - Options 16 + 17A		0500	0600	0700	0800	0900	1000	1100	1200	1300	1450
Power circuit supply											
Nominal voltage	V-ph-Hz					400-	3-50				
Voltage range	V	360-440									
Input power ⁽¹⁾											
Maximum operating input power ⁽²⁾	kW	243	299	338	390	428	492	537	569	613	690
Operating current draw ⁽¹⁾											
Maximum Current (Un) ⁽²⁾	Α	385	477	537	619	680	781	851	905	974	1096
Maximum Current (Un-10%)	Α	410	517	564	662	709	846	890	975	1017	1142
Power factor at maximum input power ⁽¹⁾						0,91	-0,93				
Displacement Power Factor (Cos. Phi) ⁽³⁾						>0	,98				
Total current harmonic distortion rate (THDi) ⁽⁴⁾	%					35-	45%				
Start-up current ⁽¹⁾											
Maximum Current (Un) ⁽⁵⁾	Α	210	275	304	305	322	433	469	479	503	619

30XBV-A - Duplex Units - Options 16 + 17A		16	600	1800		
		1600_1	1600_2	1800_1	1800_2	
Power circuit supply						
Nominal voltage	V-ph-Hz		400-	-3-50		
Voltage range	V	360-440				
Input power ⁽¹⁾						
Maximum operating input power ⁽²⁾	kW	390	390	428	428	
Operating current draw ⁽¹⁾						
Maximum Current (Un)(2)	Α	619	619	680	680	
Maximum Current (Un-10%)	Α	662 662 709 709				
Power factor at maximum input power ⁽¹⁾		0,91-0,93				
Displacement Power Factor (Cos. Phi)(3)		>0,98				
Total current harmonic distortion rate (THDi) ⁽⁴⁾	%	35-45%				
Start-up current(1)						
Maximum Current (Un) ⁽⁵⁾	Α	305	305	322	322	

 $^{(1) \}quad \hbox{Values obtained at operation with maximum operating input power.}$

⁽²⁾ Values given on the unit nameplate.(3) Values decrease when load lowers.

⁽⁴⁾ May vary according to the installation's short circuit ratio. The exact values depend on the short-circuit ratio (Rsce).

THDi increases when load lowers. It's necessary to consider a degradation of the values when the input power drops.

The highest impact on the installation occurs when the current is maximum.

Therefore compliance of the installation regarding voltage harmonic distortion at PCC (per IEC61000-2-4 or other standard) shall be usually checked at max load in order to cover all load conditions.

 $^{(5) \}quad \text{Starting current of the smallest compressor} + \text{Operating current of the biggest compressor} + \text{Fan current.}$

ELECTRICAL DATA (50Hz & 60Hz)

Distribution of compressors per circuit

Compressor	Circuit	0500	0600	0700	0800	0900	1000	1100	1200	1300	1450
06ZCE1H3AA06013	Α	1	-	-	-	-	-	-	-	-	-
U02CEIH3AAU0UI3	В	1	-	-	-	-	-	-	-	-	-
2072777	Α	-	1	1	-	-	-	-	-	-	-
06ZCE1T3AA06013	В	-	1	1	1	1	-	-	-	-	-
	Α	-	-	-	1	1	1	1	-	-	-
06ZFC2T3AA06013	В	-	-	-	-	-	1	1	1	1	-
007 1001104 400010	Α	-	-	-	-	-	-	-	1	1	1
06ZJG3H3AA06013	В	-	-	-	-	-	-	-	-	-	1

Compressor	Circuit	1600_1	1600_2	1800_1	1800_2
06ZCE1H3AA06013	Α	-	-	-	-
U6ZCEIH3AAU6U13	В	-	=	-	-
	Α	-	-	-	-
06ZCE1T3AA06013	В	1	1	1	1
067502724406012	Α	1	1	1	1
06ZFC2T3AA06013	В	-	-	-	-
06ZJG3H3AA06013	Α	-	-	-	-
U02JU3N3AAU0U13	В	-	-	-	-

ELECTRICAL DATA (50Hz & 60Hz)

Electrical notes

Compliance of electrical installation

Electrical installation and all the connections to the network must be carried out in compliance with all standards applicable to the installation location. Generally, the recommendations of the International Electrotechnical Commission document (IEC60364) are accepted as compliance with the requirements of the installation guidelines.

The units are designed and built to ensure compliance with these guidelines. The European standard EN 60204-1 corresponds to IEC 60204-1 - Machine safety - Electrical equipment of machines - part 1: General requirements.

It was specifically taken into account when the electrical equipment was designed.

Note: The standard EN60204-1 also enables to meet the requirements of the Machinery Directive.

Annex B of EN 60204-1 is intended to define the electrical characteristics used for the operation of the units.

Those described below apply alongside the other information provided in this document.

Note: if aspects of an installation require different specifications from those listed below (or which are not listed), always contact your Carrier representative.

Overcurrent Protections

Overcurrent protection of the power supply conductors is not provided with the unit.

WARNING: A part of the short circuit protection must be carried out on the customer installation, in compliance with the instructions given in this document.

Leakage Currents Protections

If protection by monitoring the leakage currents is necessary to ensure the safety of the installation, the presence of DC voltage component as well as additional derived currents introduced using variable frequency drives in the unit must be considered.

It is especially recommended that the differential protection devices are:

- · Suitable for protection of DC and AC circuitry
- Of reinforced immunity protection types and/or set at a threshold value not lower than 150 mA.

Unit's Power Connection Point

The units are equipped with one electrical power connection point as standard. For duplex units, each module has its own power connection point.

When the option 70/70D is selected, the power connection point is located immediatly upstream of the main disconnect switch.

Neutral Regime

The units are designed for connection to TN networks (IEC 60364).

The neutral wire (N) must not be connected directly to the unit.

Note

In IT networks, the use of filters integrated into the variable frequency drives is not suitable.

In addition, the equipment's short circuit holding current characteristics are modified.

Unit's Disconnect Switch

The absence of the main disconnect switch is an exception that shall be considered at the building installation level.

The unit has no CE marking. To install the unit into EU, it is mandatory to select the option 70 or 70D.

With the option 70 or 70D, the main disconnect switch is of a type suitable for power interruption, in compliance with EN 60947-3 (equivalent to IEC 60947-3).

Environment Classification following IEC 60364

Environment Criteria	Environment Class
Ambient atmosphere	Outdoor ⁽¹⁾
Altitude	up to 1000 m (2000 m) ⁽²⁾
Ambient temperature range	from -20 °C to +48 °C (55 °C) ⁽³⁾
Presence of solid foreign bodies	Class AE3 (no significant dust present)(1)
Presence of water	Class AD4 (projection in all directions without pressure) ⁽¹⁾
Presence of corrosive and polluting substances:	Class AF1 (negligible)
Competence of personnel:	BA4 (trained personnel).

- The required protection level for this class is IP43-W minimum (according to the reference standard IEC 60529). All units are classified as IP54-W and fulfil this protection condition.
- (2) Above 1000m, the maximum temperature must be reduced by 0.5K for every additional 100m up to 2000m.
- (3) The value in brackets corresponds to operation with degraded thermal performances.

Electromagnetic (High frequency) conducted disturbances

Compatibility levels for electromagnetic (high frequency) conducted disturbances following EN 61800-3:

Disturbance Criteria	Disturbance Level
Immunity to external interference	Defined by the second environment ⁽¹⁾
Interference emissions	Defined in category C3 ⁽²⁾

(1) Examples of installations included in the first / second electromagnetic environments:

First Environment	Second Environment
§ commercial buildings	§ Industrial zones
§ residential buildings	§ Technical premises powered from a dedicated transformer.

(2) <u>Category C3</u> is suitable for use in an industrial environment and is not designed for use in a public low-voltage system that supplies residential or commercial locations.

Warning: In a residential or commercial environment, this product may cause radio interference in which case additional mitigation measures could be required.

Note: EN 61800-3 is equivalent to IEC 61800-3.

Low frequency conducted disturbances

Compatibility levels for low frequency conducted disturbances as per the class 2 levels from IEC 61000-2-4:

Disturbance Criteria	Disturbance Level
Power supply frequency variation	±1Hz
Voltage Phase imbalance	2%
Voltage Total Harmonic Distortion (THDu)	8%
Rated impulse voltage Uw (IEC60664-1)	2,5 kV

The units integrate variable frequency drives which have harmonic currents which are a source of interference.

An analysis may be required to verify if this interference exceeds the compatibility limits of the other devices connected to the same power supply network.

Note: The compatibility levels inside an electrical installation, that must be met at the in-plant coupling point (IPC) to which other loads are connected, are described in standard IEC 61000-2-4.

WARNING: If the phase imbalance exceeds the limit specified above, contact your local electricity supplier and ensure that the chiller is not switched on until corrective measures have been taken.

Voltage Phase Imbalance Calculation [%]

(100 x max.deviation from average voltage)
Average voltage

Example:

On a $400\,\text{V}$ - $3\,\text{ph}$ - $50\,\text{Hz}$ supply, the individual phase voltages were measured with the following values:

AB = 406 V;

AC = 399 V;

Average voltage = (406 + 399 + 394)/3 = 1199/3 = 399.7 (rounded up to 400 V).

Calculate the maximum deviation from the 400 V average:

(AB) = 406 - 400 = 6(BC) = 400 - 399 = 1

(CA) = 400 - 394 = 6

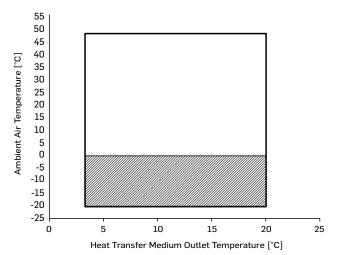
The maximum deviation from the average is 6 V.

The greatest percentage deviation is: $100 \times 6/400 = 1.5\%$

This is less than the permissible 2% and therefore acceptable.

OPERATING RANGE

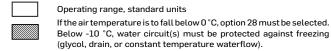
Operating Range of Standard Units


Heat Transfer Medium Heat Exchanger		Minimum	Maximun
Heat Transfer Medium Inlet Temperature at start-up	°C °F	-	45(1) 113
Heat Transfer Medium Inlet Temperature during operation	°C °F	6,8 44,2	36 96,8
Heat Transfer Medium Outlet Temperature during operation	°C °F	3,3(2) 37,9	20 68
Air Heat Exchanger		Minimum	Maximun
Ambient Air Temperature during operation - standard unit	°C °F	0 32	48 118,4
Ambient Air Temperature during operation - option 28	°C °F	-20 -4	48 118,4

- (1) Operating at partial load.
- (2) According to the type of installation and air temperature.

Notes:

- If the air temperature is to fall below 0 °C, option 28 must be selected.
- If the air temperature is to fall below -10 °C, option 28 must be selected, and water circuit(s) must be protected against freezing (glycol, drain, or constant temperature waterflow).

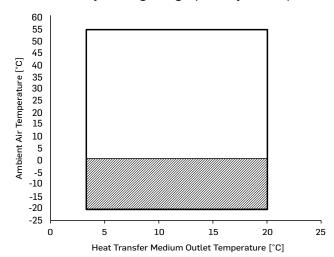

Units Operating Range

NOTES:

 These ranges are given for indicative purpose. Check the operating range from Carrier electronic catalogue.

Legend

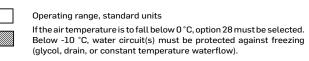
Operating Range of Units + Option16

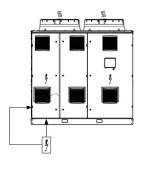

Heat Transfer Medium Heat Exchanger		Minimum	Maximun
Heat Transfer Medium Inlet Temperature at start-up	°CI°F	-	45(1) 113
Heat Transfer Medium Inlet Temperature during operation	°C I °F	6,8 44,2	36 96,8
Heat Transfer Medium Outlet Temperature during operation	°CI°F	3,3(2) 37,9	20 68
Air Heat Exchanger		Minimum	Maximun
Ambient Air Temperature during operation - standard unit + option 16	°CI°F	0 32	55 131
Ambient Air Temperature during operation - option 28 + option 16	°CI°F	-20 -4	55 131

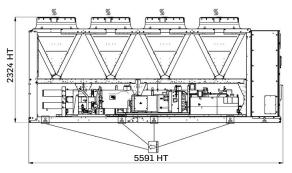
- (1) Operating at partial load.
- (2) According to the type of installation and air temperature.

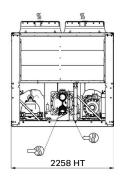
Notes

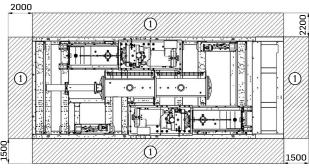
- If the air temperature is to fall below 0 °C, option 28 must be selected.
- If the air temperature is to fall below -10 °C, option 28 must be selected, and water circuit(s) must be protected against freezing (glycol, drain, or constant temperature waterflow).


Units Operating Range (with option 16)

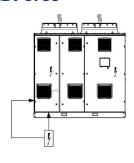

NOTES:

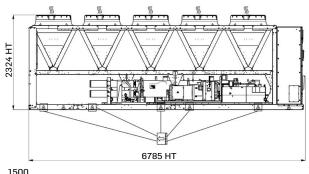

 These ranges are given for indicative purpose. Check the operating range from Carrier electronic catalogue.

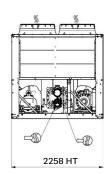

Legend

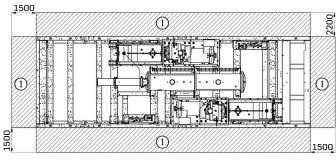


30XBV 0500 & 0600









30XBV 0700

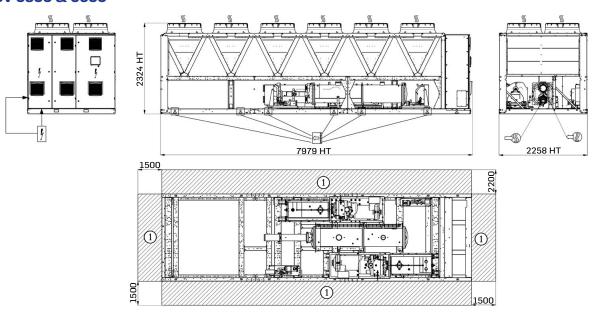
Legend

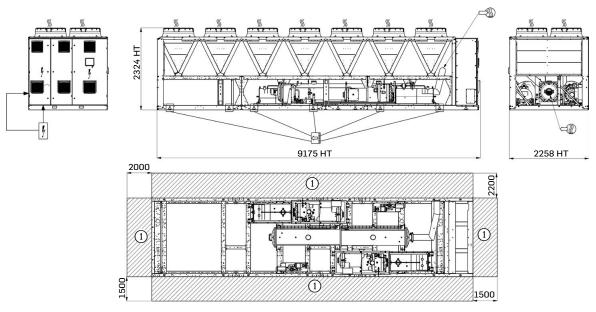
All dimensions are given in mm.

1 Cooler water inlet and outlet

Inlet water

Outlet water


Air outlet, do not obstruct


Electrical supply entry

NOTES:

30XBV 0800 & 0900

30XBV 1000

Legend

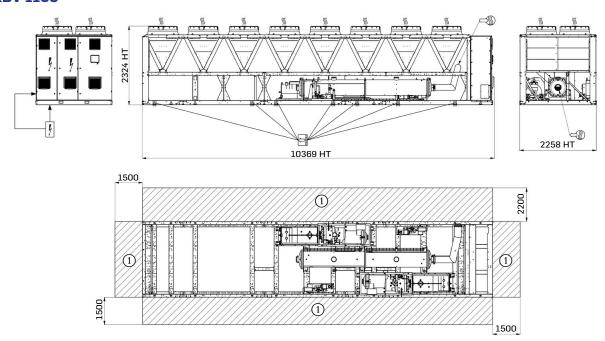
All dimensions are given in mm.

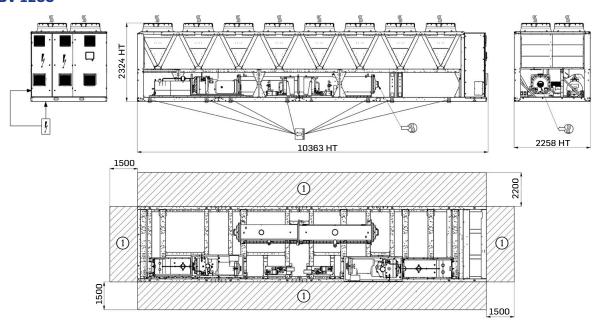
1)

Cooler water inlet and outlet

Inlet water

Outlet water


Air outlet, do not obstruct


Electrical supply entry

NOTES:

30XBV 1100

30XBV 1200

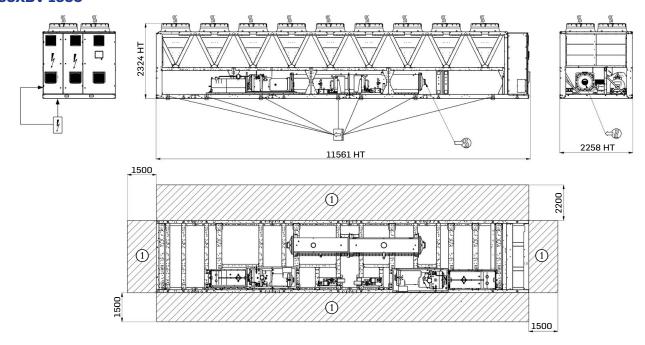
Legend

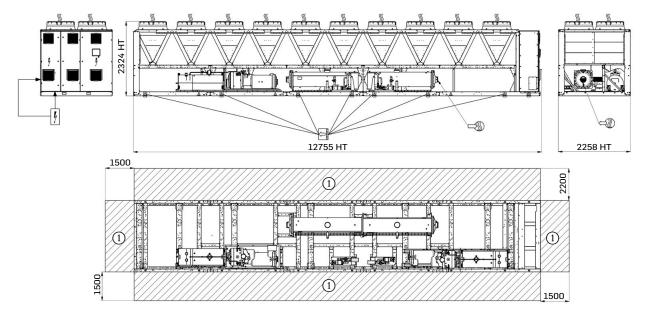
All dimensions are given in mm.

Cooler water inlet and outlet

Inlet water

Outlet water


Air outlet, do not obstruct


Electrical supply entry

NOTES:

30XBV 1300

30XBV 1450

Legend

All dimensions are given in mm.

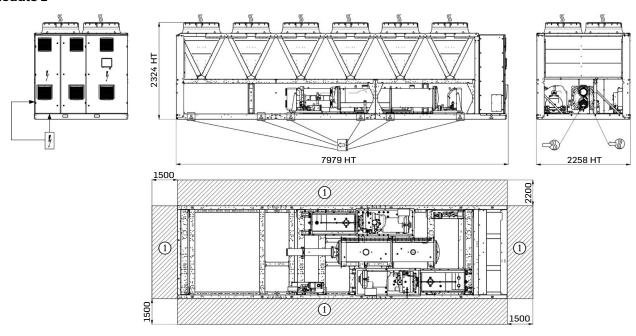
1)

Cooler water inlet and outlet

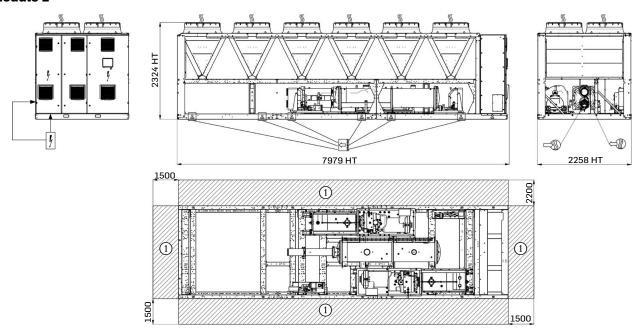
Inlet water

Outlet water

Air outlet, do not obstruct



Electrical supply entry


NOTES:

30XBV 1600

Module 1

Module 2

NOTES:

Drawings are not contractually binding.

Legend

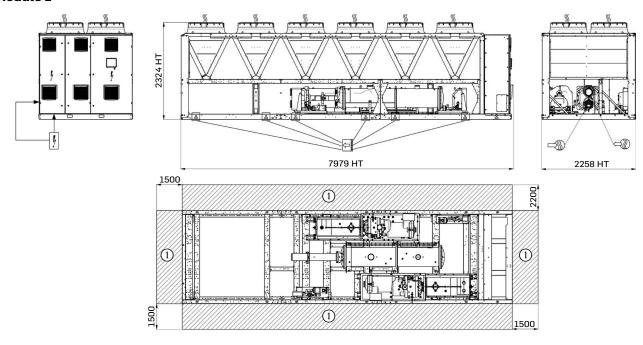
All dimensions are given in mm.

1 Cooler water inlet and outlet

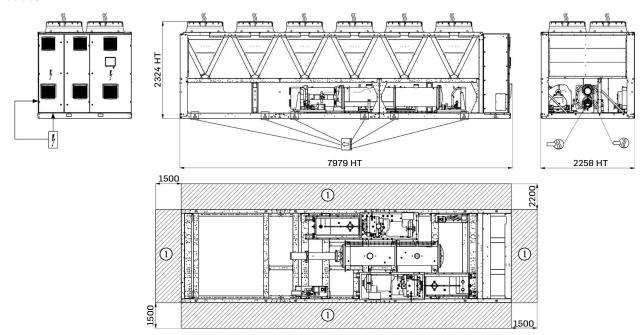
-X

Inlet water

Outlet water



Air outlet, do not obstruct


Electrical supply entry

30XBV 1800

Module 1

Module 2

Legend

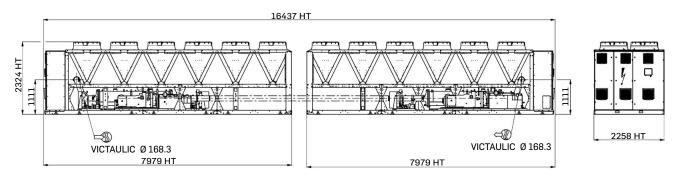
All dimensions are given in mm.

① **→**

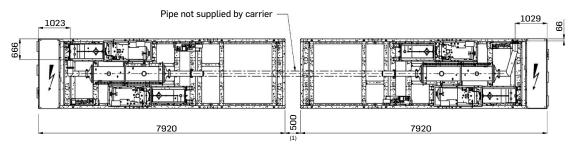
Cooler water inlet and outlet

Inlet water

Outlet water


Air outlet, do not obstruct

Electrical supply entry


NOTES:

30XBV 1600 & 1800 recommended installation

MODULE 1

MODULE 2

Space required between Module 1 and Module 2 for coil service

(1) For maintenance, if the distance is below 500 mm, the extraction of the final coils between modules is carried out by dismounting the roof of cover of the module corresponding "V" coils.

The quality management system of this product's assembly site has been certified in accordance with the requirements of the ISO 9001 standard (latest current

rise quality management system of this product's assembly site has been certified in accordance with the requirements of the ISO 3001 standard (tatest current version) after an assessment conducted by an authorized independent third party.

The environmental management system of this product's assembly site has been certified in accordance with the requirements of the ISO 14001 standard (latest current version) after an assessment conducted by an authorized independent third party.

The occupational health and safety management system of this product's assembly site has been certified in accordance with the requirements of the ISO 45001

standard (latest current version) after an assessment conducted by an authorized independent third party. Please contact your sales representative for more information

Order No.: 10820, 12.2024. Supersedes order No.: 10820, 05.2024.

Carrier, Route de Thil - BP49 01120 Montluel Cedex, France.

Manufacturer reserves the right to change any product specifications without notice.

The illustrations in this document are for illustrative purposes only and not part of any offer for sale or contract. The manufacturer reserves the right to change the design at any time without notice.